United States Patent

US009158812B2

(12) 10) Patent No.: US 9,158,812 B2
Li et al. 45) Date of Patent: Oct. 13,2015
(54) ENHANCING PARALLELISM IN 6,978,458 B1* 12/2005 Ghoshetal. 718/100
EVALUATION RANKING/CUMULATIVE 2005/0187958 Al* 82005 Wong 707/101
2006/0190947 Al* 82006 Ghoshetal. 719/313
WINDOW FUNCTIONS 2009/0063527 Al* 3/2009 Corvinellietal. 707/101
(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US) OTHER PUBLICATIONS
(72) Tnventors: Huagang Li, San Jose, CA (US): Bellamkonda et al., “Enhanced Subquery Optimizations in Oracle”,
’ Srikgnﬂ% Beilamkon({a Mounta,in View VLDB, dated Aug. 24-28, 2009, Lyon France, pp. 1366-1377.
CA (US) ’ ’ Bellamkonda et al., “Adaptive and Big Data Scale Parallel Execution
in Oracle”, The 39th International Conference on Very Large Data
(73) Assignee: ORACLE INTERNATIONAL Bases, Dated Aug. 26, 2013, pp. 1102-1113.
CORPORATION, Redwood Shores, % .
CA (US) cited by examiner
(*) Notice: Subject to any disclaimer, the term of this . oo
patent is extended or adjusted under 35 Primary Examiner — Cheyne D Ly
U.S.C. 154(b) by 184 days. (74) Attorney, Agent, or Firm — Hickman Palermo Becker
Bingham LLP
(21) Appl. No.: 13/754,740
(22) Filed: Jan. 30, 2013 (57) ABSTRACT
(65) Prior Publication Data According to one aspect of the invention, for a database
statement that specifies evaluating ranking or cumulative
US 2014/0214799 Al Jul. 31,2014 window functions, an execution strategy based on an
(51) Int.ClL extended data distribution key may be used for the database
GO6F 7/00 (2006.01) statement. In the execution strategy, each sort operator of
multiple parallel processing sort operators computes locall
GO6F 17/30 (2006.01) ple p p 2 P p y
(52) U.S.CL evaluated results of a ranking or cumulative window function
CPC ovooeeeeee e GOGF 17/30445 (2013.01) ~ based on a subset of rows in all rows used to evaluate the
(58) TField of Classification Search database statement, and sends the first and last rows’ locally
CPC ..oovvvvvrvvrerne GOGF 17/30471; GOGF 17/30486; ~ evaluated results to a query coordinator. The query coordina-
GO6F 17/30306; GO6F 17/30339; GOGF 7/24 tor consolidates the locally evaluated results received from
USPC o ssseessnss e 707/718 the multiple parallel processing sort operators and sends con-
See application file for complete search history. solidated results to the sort operators based on their respective
demographics. Each sort operator completes full evaluation
(56) References Cited of the ranking or cumulative window functions based at least
in part on one or more of the consolidated results provided by
U.S. PATENT DOCUMENTS the query coordinator.
5,499,368 A * 3/1996 Tateetal.ccccoovvvrnenie. 1
6,389,410 B1* 5/2002 Gupta vt
6,622,138 B1* 9/2003 Bellamkonda et al. 1/1 20 Claims, 5 Drawing Sheets

Database Query 198
(e.g., expression (1))

l

Query Execution
Plan Generator 115

Query Optimizer 126

l

Partition-by Key
Execution Plan 128-A

Window Sort 204
TSC 202

DATABASE STORAGE
SUBSYSTEM 150

DATABASE STORAGE
SUBSYSTEM 151

Extended-data-
distribution-key
Execution Plan 128-B

Query Coordinator
206

Window Sort 204

TSC 202

U.S. Patent

Oct. 13, 2015

FIG. 1A

Sheet 1 of 5

US 9,158,812 B2

130

g

DATABASE STORAGE
SERVER 160A

PROCESSOR 182

THREEAD
1644

THREAD
1645

'

MEMORY 170

MERORY
BLOCK
174A

MBI CHRY
BLOCK
1748

MERORY
BLOOK
1245

MEMORY
BLOCK
1248

'

LOCAL STORAGE 180
SWAP FILE 182

DATABASE
STORAGE SERVER
1608

| THREAD 1640

o o

DATABAGE STORAGE

BUBSYSTEM 180
DATARASE TABLE 182

HETWORK 140

[THREAD 184D j/\/

EXECUTION PLAM 128

!

A1, BTORAGE 130

L,

SWAP FUE 122

DATABASE SERVER

4108

*‘H"\ THREAD 1140

| THREAD 114D

\

DATABASE CLI il
PROCESSOR 192

MEMQRY 156
| DATABASE GUERY

DATABASE SERVER 1104
ROCESSOR 112
THREAD THREALD
RETS 1140
MEMORY 120

US 9,158,812 B2

Sheet 2 of 5

Oct. 13, 2015

U.S. Patent

202 DS1

¥0Z 10S mopuip

90¢
Jojeuipioo) Aianp
g-8¢T ue|d uoindax3
Aox-uoringisip
-Elep-pspusaixy

~

\I\I\\'}
TST INILSASANS
39VYO0IS ISVaviva

20Z OS1

¥0C 110S MOPUIAA

A3y Ag-uonned

V-8¢T ue|d uoilndaxy

9¢T Jaziwndp Assnp

0ST IN3LSASINS
39VYOLS ISvaviva

T
<

a1 'S

GTT JOjeJsusD ueld
uoInN2ax3 Asann

((1) uvoissaidxa ““8°9)
86T AIanpD aseqeieq

US 9,158,812 B2

Sheet 3 of 5

Oct. 13, 2015

U.S. Patent

V¢ Old
t-¢0¢ €-c0¢ ¢-coc T-c0¢
(4eah)yseH
v-¥0¢C €-v0¢ ¢-0¢ T-v0¢

US 9,158,812 B2

Sheet 4 of 5

Oct. 13, 2015

U.S. Patent

dZ 'Old

¥-¢0¢ €-¢0c¢ ¢-¢c0oc¢ 1-¢0¢

SISIOIC

(4934eNnb 4YesA)uonnguisiq

¥-v0¢ e-v0c¢ ¢-v0¢ 1-¥0¢

101euIpJ00)

SElle)

90¢

US 9,158,812 B2

Sheet 5 of 5

Oct. 13, 2015

U.S. Patent

749
LSOH
2 e T |
. - 00€ — 7
cet INT_| & = |
HHOMLIN NTENE 30V443INI 0t 7 T
W01 7 NOILYOINNWINOD ¥0SS300¥8d 7 HV 104INOD
| | ¥0SYND
f f
f f
f f
f f
f - f
9z¢ | - -
| sng 7 30IA3Q LNdNI
f f
f f
f f
LINY3LN | |
f f
| oE 308 908 | .
8zt — | 30IA30 AYONIW | “_V IaS(a
| JOVHOLS |
¥INY3S | Nod i |
Lo - - - - - - f

US 9,158,812 B2

1
ENHANCING PARALLELISM IN
EVALUATION RANKING/CUMULATIVE
WINDOW FUNCTIONS

TECHNICAL FIELD

The present invention relates to relational database man-
agement systems and, more specifically, to techniques for
evaluating ranking and cumulative window functions in a
relational database management system.

BACKGROUND

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

Window functions have been very popular in the user com-
munity and become an integral part of data warehouse que-
ries. Some classes of window functions commonly used in
data warehousing are ranking window functions and cumu-
lative window functions. Database statements in data ware-
house environments may involve one or more such window
functions.

Window functions such as ranking window functions and
cumulative window functions are often used as foundational
analysis tools for data sets. For example, one or more such
window functions may be used to extract information on sales
data stored in a database system. This information can be
utilized by a company to track sales, evaluate policy, develop
marketing strategy, project future growth, and perform vari-
ous other tasks.

In a database context, ranking window functions and
cumulative window functions can be evaluated for a given set
of records, which can be further grouped according to one or
more partition-by key values and one or more order-by keys.
The desired grouping can be specified in a database query,
such as a SQL query.

Given the importance of window functions for data analy-
sis, providing a quick result for database queries containing
window functions is often an important database perfor-
mance metric. To answer such a database query in an accel-
erated fashion, the database query can be formulated as par-
allel operations when creating a query execution plan for
execution by database software in a hardware configuration.

Based on the foregoing, there is a need for developing

techniques that can evaluate window functions in a highly
efficient and scalable fashion.
The approaches described in this section are approaches that
could be pursued, but not necessarily approaches that have
been previously conceived or pursued. Therefore, unless oth-
erwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which like reference numerals refer to similar
elements and in which:

FIG. 1A is a block diagram that depicts an exemplary
database system;

FIG. 1B is a block diagram that depicts the generation of
exemplary query execution plans using a query optimizer;

10

25

30

35

40

45

50

55

65

2

FIG. 2A and FIG. 2B illustrate example execution plans;
and

FIG. 3 is a block diagram illustrating a computer system on
which embodiments of the invention may be implemented.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in order to provide
a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present
invention.

Definitions

A “computing node”, as the term is used herein, refers to a
set of one or more processes (under control of an operating
system) and a portion of memory and/or other computer
resources, that are allocated for performance of one or more
functionalities pursuant execution of software by said one or
more processes. A computing node is also referred to herein
as anode. A node includes a “server” or “server instance” that
is configured to respond to requests from various clients and
applications for one or more services and/or functionalities.

Examples of nodes include without limitation database
servers that manage data in one or more databases, storage
devices that store data persistently for database servers, mul-
timedia server instances that manage various types of multi-
media such as images, audio/video streams, and other
streamed multimedia content, internet server instances that
cache content that is persistently stored elsewhere, applica-
tion server instances and other types of middleware server
instances that cache data to service particular types of clients
and applications, and any other types of instances that are
configured to process persistently stored data by buffering it
into a volatile memory cache.

An “execution plan” or “query execution plan”, as the term
is used herein, refers to a set of steps that are generated by a
database system to execute a database statement such as a
query, etc. Several candidate execution plans may be gener-
ated for a particular statement, and a candidate execution plan
estimated to be most efficient may be selected as the actual
execution plan. The selection of an optimal candidate execu-
tion plan is beyond the scope of the present application and
the selection of an efficient candidate execution plan will be
assumed.

An execution plan may be represented by a tree (or a graph)
ofinterlinked nodes, referred to herein as “operators”, each of
which corresponds to a step of an execution plan, referred to
herein as an execution plan operation. The hierarchy of the
tree represents the order in which the execution plan opera-
tions are performed and how data flows between each of the
execution plan operations. Execution plan operations
include, for example, an aggregation, a sort, a table scan, an
index scan, hash-join, sort-merge join, nested-loop join, and
filter.

A “record source”, as the term is used herein, refers to an
operator that when executed produces a set of rows, for
example by scanning the rows of a database table, or by
performing an operation, such as a table join, on one or more
inputs to create a new set of intermediate records. When a
record source is defined for a particular operator, such as for

US 9,158,812 B2

3

an aggregation operator, a consumer process, etc., then the
record source is defined as an input for that particular opera-
tor.

When data is stored in a relational database system, appli-
cations access the data by submitting commands that conform
to the database language supported by the relational database
system. The most common database language is the Struc-
tured Query Language (SQL).

Relational database systems store data in the form of
related tables, where each table has one or more columns and
zero or more rows. A relational database management system
may organize data in the tables in disk blocks (or data blocks)
ondisk. A “disk block™ is a logical unit of data storage used by
arelational database management system for storing database
data. A disk block has a block size (e.g., 4 KB) and may
encompass one or more underlying file system or operating
system blocks. Among other information, a disk block may
include the data of one or more rows of a table or tables, or the
data of a row may span multiple disk blocks.

General Overview

A ranking or cumulative window function in a database
statement refers to an analytical function (e.g., as specified in
a “PARTITION BY” clause with an “ORDER BY” clause)
that is evaluated against a sliding window of data from
unbounded preceding up to a current row and returns a row
number, rank, dense rank, sum, average, minimum, maxi-
mum, count, variance, standard deviation, first value, last
value, etc., for each row in the sliding window up to that row
(including its duplicates) in a result set. The database state-
ment specifies one or more partition-by columns (or partition-
by keys) in the “PARTITION-BY” clause and one or more
order-by columns (or order-by keys) in the “ORDER BY”
clause.

Parallel execution schemes for evaluating ranking window
functions and cumulative window functions may not scale
well. Typically, these schemes use a data distribution key
comprising only partition-by keys to distribute input data to
multiple processes executing in parallel. A data distribution
key has a number of distinct values that may be used to
distribute input data to different processes among parallel
executing processes. The number of distinct data distribution
key values determines the number of possible parallel execut-
ing processes that can be used to evaluate a ranking or cumu-
lative window function.

When the partition-by keys have a low number of combi-
nations of values, the number of possible parallel executing
processes is also low.

For example, a database system may have hundreds, thou-
sands, or more potential parallel executing processes avail-
able for parallel execution. A database statement may specify
a “region” column in a table “sales” as the only partition-by
key for a ranking or cumulative function. A data distribution
key that comprises the partition-by key (the “region” column)
would have only two distinct values (e.g., “west” and “east”).
As a result, only two parallel executing processes could be
used to receive input data to evaluate the ranking or cumula-
tive window function.

To overcome scalability issues associated with a low num-
ber of distinct values of partition-by keys, a scalable compu-
tation algorithm as described herein selects a data distribution
key (referred to as “extended data-distribution key”) not just
based on partition-by keys but also based on order-by keys.
Additionally or optionally, other columns or temporary dis-
tribution variables may be used as part of the data distribution
key or used in a distribution function based on the data dis-

10

15

20

25

30

35

40

45

50

55

60

65

4

tribution key. Because of the presence of the order-by keys,
other columns, and temporary distribution variables, the
number of distinct values of the data distribution key in the
scalable computation algorithm can be made sufficiently
large to distribute input data to a large number of parallel
executing processes. This data distribution strategy is effec-
tive as it can scale up to many parallel executing processes
(e.g., according to what is indicated by a parallel processing
related parameter such as a degree of parallelism) without
being limited to only the number of distinct combinations of
values of the partition-by keys, resulting in a more efficient
use of a large number of resources available in database
systems than otherwise.

Two phases may be used in these scalable algorithms. In
the first phase of the algorithms, input rows for evaluating a
ranking or cumulative window function are distributed using
an extended data-distribution key. The extended data-distri-
bution key includes some or all keys from order-by keys in
addition to partition-by keys. In some embodiments, the
extended data-distribution key further includes a temporary
distribution variable in addition to order-by keys and parti-
tion-by keys. Input data is distributed to a plurality of parallel
executing processes such as operators based on a plurality of
mutually exclusive ranges of the extended data-distribution
key.

A parallel executing process that receives input data in a
corresponding range in the plurality of mutually exclusive
ranges can sort the input data based on the partition-by keys
and the order-by keys. Each of the parallel executing pro-
cesses may require information about input data distributed to
or processed by other parallel executing processes in order to
arrive at the final results for rows in the first data partition
and/or the last data partition in the sorted input data received
and processed by that parallel executing process. Each of the
parallel executing processes first computes local (possibly
partial) results based on the local input data in a correspond-
ing range of the plurality of mutually exclusive ranges and
communicates at least some (e.g., partially aggregated/evalu-
ated values for the first row of the first data partition and the
last row of the last data partition in the input data which the
parallel executing process receives) of the partial results to a
query coordinator for consolidation. In some embodiments,
the partial results are sent with key information (e.g., values
of'the partition-by keys and/or the order-by keys) to the query
coordinator.

In the second phase of the algorithms, the query coordina-
tor performs consolidation on the received partial results from
the parallel executing processes based on the demographics
of data partitions from which the partial results are derived
and/or based on the type of the ranking or cumulative window
function being evaluated. The term “demographics” refers to
a distribution of'key values, for example, relative locations or
ranges of a data partition in terms of key values of rows in the
data partition in relation to other locations or ranges of other
data partitions. The query coordinator sends, to the parallel
executing processes, consolidated results and possibly other
information (e.g., offsets or replacements to be used by
respective parallel executing processes, etc.).

For data partitions spreading or distributed across multiple
parallel executing processes, final results of the ranking or
cumulative window function can be computed by the parallel
executing processes based on the consolidated results and
possibly other information as provided by the query coordi-
nator. For data partitions not spreading or distributed across
multiple parallel executing processes, final results of the win-

US 9,158,812 B2

5

dow function may be independently computed without refer-
ring to the consolidated results as provided from the query
coordinator.

System Overview

FIG. 1A is a block diagram that depicts an exemplary
database system, according to an embodiment. Database sys-
tem 100 of FIG. 1A includes database server 110A, database
server 110B, network 140, database storage subsystem 150,
database storage server 160A, database storage server 1608,
and database client 190. Database server 110A includes pro-
cessor 112, memory 120, and local storage 130. Processor
112 includes threads 114A and 114B. Memory 120 includes
memory block 124A, memory block 124B, and execution
plan 128. Local storage 130 includes swap file 132. Database
server 110B includes thread 114C and thread 114D. Database
storage subsystem 150 includes database table 152. Database
storage server 160A includes processor 162, memory 170,
and local storage 180. Processor 162 includes thread 164A
and thread 164B. Memory 170 includes memory block 174A
and memory block 174B. Local storage 180 includes swap
file 182. Database storage server 160B includes thread 164C
and thread 164D.

Database servers 110A-110B and database storage servers
160A-160B are multi-node systems, each comprising any
multiple number of nodes. Threads 114A-114B may be
referred to as consumers, whereas threads 164A-164B may
be referred to as producers. Each thread may be configured as
a node assigned to execute a particular operator of a query
execution plan. Multiple nodes may be assigned to the same
operator, which may also execute in parallel on multiple
computing devices. Embodiments of the present invention are
illustrated using multi-node systems, however an embodi-
ment of the present invention is not so limited.

While only a single database client 190 is shown, embodi-
ments of database system 100 may support multiple database
clients concurrently. Additionally, while only a single data-
base table 152 is shown in database storage subsystem 150,
embodiments may also include multiple database tables, and
database query 198 may address multiple database tablesin a
single query. Embodiments of database system 100 may also
include any desired quantity of database servers, database
storage servers, and database storage subsystems. For sim-
plicity, database server 110B and database storage server
160B are shown in abbreviated form in FIG. 1A. However,
database server 110B may contain elements similar to those
shown in database server 110A, and database storage server
160B may contain elements similar to those shown in data-
base storage server 160A.

Client application 194 executing on processor 192 of data-
base client 190 may be directed towards various database
applications including web services, data transactions, data
mining, high-performance computing (HPC), and other
applications. A database query 198 may be generated at client
application 194 as a SQL query for execution on database
table 152, and the query may be routed to an available data-
base server, such as database server 110A. In response, data-
base server 110A may generate a corresponding execution
plan 128, which may be executed in parallel over available
threads on database storage servers 160A-160B and database
servers 110A-110B. As shown in database system 110, each
thread 114A, 114B, 164A, and 164B may allocate a corre-
sponding memory block 124A, 124B, 174A, and 174B,
respectively. If insufficient memory is available, then virtual
memory may be utilized via swap files 132 and 182 of local

10

15

20

25

30

35

40

45

50

55

60

6

storage 130 and 180, respectively. However, as discussed
below, execution plan 128 may be structured to avoid swap-
ping to local storage.

Ranking and Cumulative Window Functions

A ranking or cumulative window function may be defined
in the form of:

FUNCTION_NAME([exprl] . . .) OVER (PARTI-
TION BY expr2 [, expr3, . . . JORDER BY exprd
[, exprS, 1 [RANGEIROWS BETWEEN

UNBOUNDED PRECEDING AND CURRENT
ROWY])

As can be seen above, a ranking or cumulative reporting
function is specified with one or more partition-by keys such
as “expr2”, “expr3”, etc., in a partition-by clause and one or
more order-by keys such as “exprd”, “expr5”, etc., in an
order-by clause as shown above. The one or more partition-by
keys as represented by the one or more expressions such as
“expr2”, “expr3”, etc. The one or more order-by keys as
represented by the one or more expressions such as “exprd”,
“expr5”, etc., are ordered from left to right as specified in the
order-by clause. The difference between keywords ROWS
and RANGE is how rows with duplicate partition-by and
order-by keys/column values are treated. With the specifica-
tion of the keyword ROWS, aggregation for a given row in a
plurality of duplicate rows with the same partition-by and
order-by key values is up to that given row without regards to
whether there are other duplicate rows that follow the given
row. However, with the specification of the keyword RANGE,
aggregation for a given row in a plurality of duplicate rows
with the same partition-by and order-by key values is up to the
last duplicate row regardless of whether the given row is the
last duplicate row or not. It should be noted that the tech-
niques for evaluating window functions (such as cumulative
window functions in the discussion that follows) with the
keyword RANGE can be easily extended to handle the same
functions (e.g. the cumulative window functions) with the
keyword ROWS.

Examples of ranking window functions include
ROW_NUMBER(), RANK(), DENSE_RANK() etc. The
following expressions are example database statements that
include these types of ranking window functions:

SELECT region,sales_amount, ROW_NUM-
BER(JOVER(PARTITION BY region ORDER
BY sales_amount)FROM sales; (€8]
SELECT region,sales_amount,RANK(JOVER(PAR-
TITION BY region ORDER BY sales_amount)
FROM sales; 2)
SELECT region,sales_amount, DENSE_
RANK()OVER(PARTITION BY region

ORDER BY sales_amount)FROM sales; 3)

Examples of cumulative window functions include
SUM(), MIN(), MAX(), COUNT(), AVG(), STDDEV(),
VARIANCE(), FIRST_VALUE(), LAST_VALUE(),
FIRST_VALUE (IGNORE NULLS), LAST_VALUE (IG-
NORE NULLS), etc. The following expressions are example
database statements that include these types of cumulative
window functions:

SELECT region,sales_amount,SUM(sales_amount)
OVER(PARTITION BY region ORDER BY
sales_amount)FROM sales; 4

SELECT region,sales_amount,MIN(sales_amount)
OVER(PARTITION BY region ORDER BY
sales_amount)FROM sales;

®

US 9,158,812 B2

7

SELECT region,sales_amount,MAX(sales_amount)
OVER(PARTITION BY region ORDER BY
sales_amount)FROM sales;

Q)

SELECT region,sales_amount, COUNT(sales_a-
mount)OVER(PARTITION BY region ORDER

BY sales_amount)FROM sales; (7

SELECT region,sales_amount,AVG(sales_amount)
OVER(PARTITION BY region ORDER BY
sales_amount)FROM sales;

®)

SELECT region,sales_amount,STDDEV (sales_a-
mount)OVER(PARTITION BY region ORDER

BY sales_amount)FROM sales; ()]

SELECT region,sales_amount, VARIANCE(sales_a-
mount)OVER(PARTITION BY region ORDER

BY sales_amount)FROM sales; (10)

SELECT region,sales_amount,FIRST_VAL-
UE(sales_amount)OVER(PARTITION BY

region ORDER BY sales_amount)FROM sales; (11

SELECT region,sales_amount, LAST_VAL-
UE(sales_amount)OVER(PARTITION BY

region ORDER BY sales_amount)FROM sales; (12)

SELECT region,sales_amount,FIRST_VAL-
UE(sales_amount IGNORE NULLS)OVER
(PARTITION BY region ORDER BY sales_a-

mount)FROM sales; (13)

SELECT region,sales_amount, LAST_VAL-
UE(sales_amount IGNORE NULLS)OVER
(PARTITION BY region ORDER BY sales_a-

mount)FROM sales; (14)

A database statement (e.g., a SQL statement) may specify
one or more of these different types of ranking and/or cumu-
lative window functions.

Execution Strategy Based on Partition-by Keys Only

In the example database statements as shown in expres-
sions (1)-(14), the partition-by key among the three reporting
window functions is the “region” column of the table “sales”.

When a database statement such as any of expressions
(1)-(14) is executed in parallel in runtime, data distribution to
a plurality of operators/processes can be done based on dis-
tinct combinations of values of one or more partition-by keys
specified in the database statement. A partition-by-key execu-
tion plan refers to a parallel execution plan for a database
statement that uses such a data distribution approach. FIG. 2A
illustrates an example partition-by-key execution plan to
execute a database statement comprising reporting window
functions as illustrated in expression (1). The partition-by-
key execution plan comprises a plurality of table scan (TSC)
operators and a plurality of window sort operators. Each of
these operators in the partition-by-key execution plan may be
assigned to a respective operator for execution in runtime.

Each window sort operator may consume or receive (input)
rows with one or more specific distinct combinations of val-
ues of partition-by keys and assigned to evaluate the ranking
or cumulative window function using the rows having these
specific distinct combinations of values of the partition-by
keys.

Each TSC operator may be assigned the task to retrieve
(input) rows or records from a size-comparable portion of
data blocks in a database table and distribute the retrieved
rows to respective window sort operators based on distinct
combinations of values of the partition-by keys as indicated in
database values of the retrieved rows. A TSC operator may

10

15

20

25

30

35

40

45

50

55

60

65

8

use a distribution function (hash-based or range-based or any
other equivalent schemes) that takes a distinct combination of
values of the partition-by keys indicated by database values of
an input row as input and returns the identity of'a correspond-
ing window sort operator to which the input row should be
sent or distributed.

Window sort operators/processes receiving their respective
subsets of rows may sort or arrange the received rows into a
sort order. Evaluation (e.g., sorting, ranking, aggregation,
counting, etc.) of the ranking or cumulative window functions
in the database statement may be performed against (e.g.,
sequentially through) the same sort order. Since all rows in a
particular subset of rows received by a particular window sort
operator/process share the same unique combination of val-
ues of the partition-by keys, the particular window sort opera-
tor/process can compute the ranking or cumulative window
function based on the subset of rows, independent of other
window sort operators/processes. The other window sort
operators/processes can also concurrently and independently
compute the same ranking or cumulative window function
based on other subsets of rows that do not share the same
combination of values of the partition-by keys as the particu-
lar subset of rows.

This parallel execution model works well when the number
of partitions, or the number of subsets of rows created by
distinct values of a partition-by keys, is sufficiently large to
satisfy one or more criteria relating to a desired degree of
parallelism (DOP).

Extended Data Distribution Key

A DOP refers to a type of parallel processing measure that
indicates how many parallel processing entities/units such as
parallel executing processes should be (approximately) used
for parallel execution of a database statement. For example, a
DOP value of ten may indicate that ten parallel executing
processes may be available for performing one or more opera-
tions in parallel. A user may annotate different tables with the
same or different DOP values. A query optimizer may also
select a DOP value based on one or more factors including
runtime conditions. For example, resource requirements such
as CPU usage, 1/0 usage, etc., for a query may be estimated.
In a non-limiting example, the resource requirements may be
expressed as one or more numeric values. In some embodi-
ments, a minimum time threshold may be defined for a pro-
cessing entity such as a process; this parameter indicates that
the processing entity should at least be occupied with work
for a minimum time period as indicated by the minimum time
threshold. A DOP value may be automatically determined
based on the resource requirements estimated and the mini-
mum time threshold. In an example, for a query that is esti-
mated to take one minute, if a process requires a minimum
time threshold of 10 seconds in order to perform useful work,
a DOP value of six may be determined. In another example,
for a query that is estimated to take ten minutes, if a process
requires a minimum time threshold of 10 seconds in order to
perform useful work, a DOP value sixty may be determined.
It should be noted that other parallelism measures or param-
eters may be used in addition to or in place of a DOP. For
example, the number of available processes may be directly
used as a parallelism measure; in that case, the number of
distinct values of a data distribution key should be larger than
the number of processes available for executing reporting
operations.

To overcome scalability issues associated with a low num-
ber of distinct values of partition-by keys in the prior
approaches, two-phase scalable computation algorithms may

US 9,158,812 B2

9

be used to evaluate one or more ranking and/or cumulative
window functions in a database statement.

In the first phase, an extended data distribution key is used
to distribute input rows among a plurality of operators that
evaluate a ranking or cumulative window function. In some
embodiments, the extended data-distribution key further
includes a temporary distribution variable in addition to
order-by keys and partition-by keys. Input data is distributed
to a plurality of parallel executing processes such as operators
and parallel executing processes based on a plurality of mutu-
ally exclusive ranges of the extended data-distribution key.
The evaluation of the ranking or cumulative window function
may be partially performed by an operator in the plurality of
operators, because the operator may not have all rows neces-
sary for full evaluation of the ranking or cumulative window
function. Partial results (e.g., locally evaluated results for the
first and last partitions processed by an individual parallel
executing processes in the plurality of parallel executing pro-
cesses) in the evaluation of the ranking or cumulative window
function are communicated to a query coordinator for con-
solidation. In some embodiments, the partial results are sent
with key information (e.g., values of the partition-by keys
and/or the order-by keys) to the query coordinator. The key
information as provided by the parallel executing processes to
the query coordinator may be used by the query coordinator to
detect different rows with duplicate key values. This is impor-
tant as unbounded preceding rows of a current data partition
up to a current row are used to evaluate a ranking or cumula-
tive window function up to the current row; where there are
rows with duplicate (partition-by AND order-by) key values,
the current row refers to the last row with the same duplicate
key values no matter where the last row may be located.

In an example, the last row with the same duplicate key
values may be in the same local data of a parallel executing
process in which the very first row with the same duplicate
key values appears. In another example, the last row with the
same duplicate key values may be in local data of a parallel
executing process (immediately or separated by one or more
intermediate parallel executing processes) following a pre-
ceding parallel executing process in whose local data the very
first row with the same duplicate key values appears.

In a second phase of the algorithms, the query coordinator
performs consolidation on the partial results and sends con-
solidated results to respective parallel executing processes so
that the parallel executing processes can produce final results.
The query coordinator may be configured to use key values
provided with the partial results to perform correct consoli-
dation of the locally evaluated results.

As used herein, the term “data partition” refers to a logical
partition of all input data (e.g., all input rows) that are used to
evaluate a database statement such that input data (e.g., input
rows) in the logical partition all share a distinct combination
of the partition-by keys specified in a ranking or cumulative
window function.

Producers of input data may also work in parallel with one
another. A distribution function may be used by a producer to
direct/distribute a given input row to a specific parallel
executing process in a plurality of parallel executing pro-
cesses that are tasked to evaluate a ranking or cumulative
function based on their respective local input data. The dis-
tribution function divides all possible distinct combinations
of values of partition-by keys and order-by keys in an
extended data distribution key into a plurality of mutually
exclusive ranges. Each range in the plurality of mutually
exclusive ranges comprises one or more distinct (combina-
tional key) values in the extended data distribution key. In
embodiments in which the extended data distribution key

10

15

20

25

30

35

40

45

50

55

60

65

10

includes a temporary distribution variable, a producer may
assign values of the temporary distribution variables to input
rows; input rows (e.g., duplicate rows) with the same distinct
combination of the partition-by keys and order-by keys in the
extended data distribution key can be distributed to one or
more different but contiguous parallel executing processes in
the plurality of parallel executing processes.

Since the extended data distribution key is more specific
than the partition-by keys alone, input rows that have combi-
national key values in a range in the plurality of mutually
exclusive ranges represent a data sub-partition, of a data
partition represented by a distinct combination of values of
the partition keys.

Enhance Parallelism

An extended-data-distribution-key execution plan refers to
aparallel execution plan for a database statement that uses an
extended data distribution key comprising (1) one or more
(e.g., all) partition-by keys as specified by a ranking or cumu-
lative window function, (2) one or more order-by keys as
specified by the ranking or cumulative window function, and
(3) a temporary distribution variable if used to further divide/
distribute rows with duplicate rows (e.g., of same or duplicate
partition-by and order-by key values), for data distribution to
multiple parallel executing processes performing underlying
database operations. FIG. 2B illustrates an example
extended-data-distribution-key execution plan to execute a
database statement comprising one or more ranking or cumu-
lative window functions as illustrated in expressions (1)-(14).
The extended-data-distribution-key execution plan com-
prises a plurality of table scan (TSC) operators (which may be
parallel executing processes that produce input rows) and a
plurality of window sort operators (which may be parallel
executing processes performing evaluation of a ranking or
cumulative window function based on their respective local
input data received from the TSC operators). Each of these
operators in the extended-data-distribution-key execution
plan may be assigned to a respective parallel executing pro-
cess for execution in runtime.

Each window sort operator may consume or receive (input)
rows within a corresponding range in the plurality of mutually
exclusive ranges (as further divided or distributed with a
temporary distribution variable if used) and assigned to evalu-
ate the ranking or cumulative window function using the rows
in the corresponding range.

Each TSC operator may be assigned the task to retrieve
(input) rows or records from a size-comparable portion of
data blocks in a database table and distribute the retrieved
rows to respective window sort operators based on distinct
combinations of values of the partition-by keys and the order-
by keys in the extended data distribution key as indicated in
database values of the retrieved rows. A TSC operator may
use a distribution function that takes a distinct combination of
values of the partition-by keys and the order-by keys in the
extended data distribution key indicated by database values of
an input row as input and returns the identity of'a correspond-
ing range in the plurality of mutually exclusive ranges and/or
a corresponding window sort operator to which the input row
should be sent or distributed.

In embodiments in which an extended data distribution key
further comprises a temporary distribution variable to distin-
guish rows with the same combination of values of partition-
by keys and order-by keys, a cycle sequence value (which
cycles through a sequence of values), a sequentially incre-
menting or decrementing value, a random number, etc., may
be temporarily assigned (e.g., by a producer operator such as

US 9,158,812 B2

11

a TSC operator) as the value of the temporary distribution
variable to a row. A producer may assign temporary values to
the temporary distribution variable independently without
regards to what temporary values another producer may
assign to the temporary distribution variable. This introduces
no conflict since there is no requirement that temporary val-
ues of the temporary distribution variable must be globally
unique across all producers. A TSC operator, or through a
table queue object, may use a distribution function that takes
a distinct combination of values of the partition-by keys, the
order-by keys and the temporary distribution variable in the
extended data distribution key and returns the identity of a
corresponding range in the plurality of mutually exclusive
ranges and/or a corresponding window sort operator to which
the input row should be sent or distributed.

Window sort operators/processes receiving their respective
subsets of rows may sort or arrange the received rows into a
sort order. In some embodiments, the sort order is determined
by the partition-by keys and order-by keys included in the
extended data distribution key. Alternatively or optionally, the
sort order may be another order more specific than an order
based on distinct (combinational) values of all partition-by
keys and order-by keys. For instance, the sort order may
additionally or optionally include another column (e.g., a
measure column of cumulative window function; in some
non-limiting embodiments, measure columns only applies to
FIRST_VALUE/LAST_VALUE functions) as the lowest key
column; such other column may not be a partition-by key or
order-by key.

Once the sort order is set in local input data, evaluation
(e.g., sorting, ranking, aggregation, counting, etc.) of the
ranking or cumulative window functions in the database
statement may be performed by an individual window sort
operator in the plurality of window sort operators based on the
local input data by an individual window sort operator/pro-
cess against (e.g., sequentially through) the same sort order.

Input rows in a data partition may fall into different data
sub-partitions and spread across two or more different pro-
cesses (e.g., window sort operators) performing window sort
operations. Duplicate rows in the same data sub-partition may
be further distributed across multiple window sort operators
when a temporary distribution variable is used in a distribu-
tion function.

For the purpose of illustration only, an extended data dis-
tribution key is formed by the “region” and “sales_amount”
columns for parallel execution of the database statement as
shown in expression (1), and may include a temporary distri-
bution variable in some embodiments, in accordance with an
extended-data-distribution-key execution plan as illustrated
in FIG. 2B.

The number of operators in the extended-data-distribution-
key execution plan may be selected or determined based at
least in part on the number of the NDV of the extended data
distribution key and/or a desired DOP value at either runtime
or before the runtime. For the purpose of illustration only,
four window sort operators 204-1 through 204-4 may be
allocated. All possible distinct combinations of values of
columns “region” and “sales_amount” are divided into a plu-
rality of mutually exclusive ranges. For a given input row, a
TSC operator (e.g., 202-1), or a table queue object therein,
may determine a destination window sort operator to which
the input row should be sent based on a distribution function
that takes the “region” and “sales_amount” column values
(and possibly values of a temporary distribution variable to
further distinguish/distribute duplicate rows among multiple
consumers or window sort operators) from the input row.

10

15

20

25

30

35

40

45

50

55

60

65

12

Since data distribution made to a plurality of window sort
operators/processes is based on the “region” and “sales_
amount” column (and possibly a temporary assigned value of
a temporary distribution variable if used), a window sort
operator/process (one of 204-1 through 204-1 in FIG. 2B)
may receive and aggregate only a subset (e.g., only a few but
not all data sub-partitions) of a data partition that are not
sufficient for fully evaluating the ranking or cumulative win-
dow function. Under a parallel execution strategy that
employs an extended data distribution key for data distribu-
tion, an operator working on its respective input rows may
require information about other input rows processed by other
operators (e.g., the respective input rows and the other input
rows may overlap in a data partition), in order to fully evaluate
the ranking or cumulative window function.

Under techniques as described herein, locally evaluated
results (which may be partial) of the ranking or cumulative
window function stored with the first and last rows of input
rows (e.g., after sorting) in a window sort operator in the
plurality of window sort operators are sent to a query coordi-
nator 206 of FIG. 2B. Additional information such as parti-
tion-by key values and/or order-by key values of the first and
last rows may be sent to the query coordinator 206 with the
locally evaluated results of the ranking or cumulative window
function.

A second consolidation phase is used in which the query
coordinator 206 computes information necessary for window
operators to consolidate the ranking or cumulative window
function in data partitions to which locally evaluated results
of the first rows and/or last rows from all the window sort
operators 204-1 through 204-4 belong. The query coordinator
206 returns, to the window sort operators, the consolidated
results of the ranking or cumulative window function based in
part on specific demographics of the window sort operators.
The query coordinator 206 may return, to the window sort
operators, information such as specific offsets and/or specific
replacements as a part of the consolidated results.

ROW_NUMBER()

For the purpose of illustration, based on a determination
relating to DOP, three of window sort operators 204-1
through 204-4 illustrated in FIG. 2B, respectively denoted as
S0, S1, and S2, are used to evaluate a ranking function
ROW_NUMBER() in a database statement as shown in
expression (1). In the present example, an extended data
distribution key may comprise a partition-by key “region”
and an order-by key “sales_amount” but comprises no tem-
porary distribution variable. All possible distinct combina-
tional values of the partition-by key “region” and the order-by
key “sales_amount” are divided into three mutually exclusive
ranges. Each of the three mutually exclusive ranges is
assigned to a different consumer SO, S1, or S2.

For example, SO receives input rows from one or more
producers (e.g., TSC operators of FIG. 2B) in the first range in
the three ranges as shown in the following table:

TABLE 1

sales__amount

US 9,158,812 B2

13
S1 and S2 receive input rows from the one or more pro-
ducers for the second range and the third range in the three
mutually exclusive ranges as shown in the following tables,
respectively:

TABLE 2

Region sales__amount

12
12
12

20
30
30

TABLE 3

sales__amount

40
13 5
20
30

The consumers (S0, S1 and S2) perform evaluation of the
ranking window function “ROW_NUMBER()” based on
their respective input data and sends locally evaluated results
(some of which may be partial) of the first and last rows in
their respective input data to a query coordinator (e.g., 206 of
FIG. 2B), as shown in the following table:

TABLE 4

Consumers Information to QC
SO The first row (r1, 1)
The last row (r2,2)
S1 The first row (r2, 1)
The last row (12, 3)
S2 The first row (r2, 1)
The last row (3, 3)

As can be seen above, for each (e.g., the last row of SO) of
the first and last rows in its input data, a consumer (e.g., SO)
sends a couplet (e.g., (r2, 2))—which may comprise locally
evaluated result—that comprises a key value (e.g., “r2”) of a
data partition to which that row belongs and a row number
function value (e.g., 2) in the data partition as seen in the input
data (e.g., TABLE 1) received by the consumer (SO0).

Based on the data (e.g., TABLE 4) received from the con-
sumers, the query coordinator returns consolidated results to
the consumers based at least in part on the consumers’ demo-
graphics as shown in the following table:

TABLE 5
Consumers Information from QC
S0 no “offset”
S1 use 2 as “offset” for the first (also last) data partition
(12 data partition)
S2 use 5 as “offset” for the first data partition (r2 data

partition); no “offset” for other data partitions including
the last data partition (13 data partition)

As can be seen above, the information sent by the query
coordinator to a specific consumer of the three consumers
depends on the demographics of the specific consumer in
relation to other consumers in a global order in the plurality of
mutually exclusive ranges.

The partition-by keys as ordered in the ranking or cumu-
lative window function and the order-by keys as ordered in the

10

15

20

30

35

40

45

50

55

60

65

14

same ranking or cumulative window function form a single
composite key. The composite key can be used for distribu-
tion (either hash or range or any scheme which sends all rows
with the same partition-by key value combination to a single
process). Each process can receive data and sorts the data on
composite key. A global order based on the composite key
also may be used to set an order among the plurality of
window sort operators. For example, all possible combina-
tional key values may be divided, based on the composite key
(or the global order which the composite key represents), into
a plurality of mutually exclusive ranges as described herein.
The first window sort operator in the plurality of window sort
operators is given the first range(s) in the plurality of mutually
exclusive ranges; the second window operator in the plurality
of window sort operators is given possibly part of the last
range of the first range(s) and/or the immediately ranges in the
plurality of mutually exclusive ranges; and the last window
sort operator in the plurality of window sort operators is given
the last range(s) in the plurality of mutually exclusive ranges.
The terms such as “demographics”, “preceding”, “immedi-
ately preceding,” “following”, “immediately following,” etc.,
when used to describe window sort operators of FIG. 2B or
data partitions, refer to this global order preserved by the
distribution function. The plurality of producers each may
implement the same distribution function for distributing
their respective input rows to the plurality of window sort
operators.

In the present example, SO is assigned the first range in the
mutually exclusive ranges. The query coordinator sends no
offset to SO as ROW_NUMBER() values produced by SO
based on its local input data are globally correct with all input
data received by all the consumers S0, S1 and S2.

S1 is assigned the second range in the mutually exclusive
ranges. Thus, the ROW_NUMBER() values produced by S1
based onits local input data may be partial result and thus may
not be globally correct with all input data received by all the
consumers SO, S1 and S2. Since the last row information from
S0 indicates that SO and S1 have different data sub-partitions
in the same data partition (r2 data partition), the last
ROW_NUMBER() in SO (offset 2 as shown in TABLE 5) is
sent to S1 as offset. As used herein, the term “offset” may
refer to a quantity to be added to the local row number func-
tion value to obtain the final result.

S2 is assigned the third and last range in the mutually
exclusive ranges. Thus, the ROW_NUMBER() values pro-
duced by S2 based on its local input data may also be partial
result depending on what other input rows are processed by
the preceding consumers and thus may not be globally correct
with all input data received by all the consumers S0, S1 and
S2. Since the last row information from SO and S1 indicates
that SO, S1 and S2 have different data sub-partitions in the
same data partition (r2 data partition), the sum (offset 5 as
shown in TABLE 5) of the last ROW_NUMBER() in SO and
the last ROW_NUMBER() in S1 is sent to S2 as offset. Other
data partitions (e.g., r3 data partition) in S2 do not have data
sub-partitions from preceding consumers; the query coordi-
nator accordingly provides no offset to S2 for the other data
partitions.

Based on the information from the query coordinator, each
consumer can complete full evaluation of the ranking window
function ROW_NUMBER() for each of the input rows for
which that consumer is responsible.

For the ranking window function ROW_NUMBER() the
same cooperative processing between the query coordinator
and the consumers, as performed with an extended data dis-
tribution key that does not comprise a temporary distribution
variable, may be similarly used with an extended data distri-

US 9,158,812 B2

15

bution key that comprises a temporary distribution variable.
The value assignment for the ranking window function
ROW_NUMBER() when duplicate rows are distributed
among different consumers can be similarly performed to
how the value assignment is performed when duplicate rows
are not distributed among different consumers.

RANK()

For the purpose of illustration, based on a determination
relating to DOP, three consumers (e.g., three of window sort
operators 204-1 through 204-4 illustrated in FIG. 2B), respec-
tively denoted as SO, S1, and S2, are used to evaluate a
ranking function RANK() in a database statement as shown
in expression (2). In the first example of evaluating this rank-
ing window function, an extended data distribution key may
comprise a partition-by key “region” and an order-by key
“sales_amount” but no temporary distribution variable. Input
data as illustrated in TABLEs 1, 2 and 3 are respectively
assigned to the consumers SO, S1 and S2 based on the same
mutually exclusive ranges as illustrated with ROW_NUM-
BER().

The consumers (S0, S1 and S2) perform evaluation of the
ranking window function “RANK()” based on their respec-
tive input data and send the locally evaluated results (some of
which may be partial) of the first and last rows in their respec-
tive input data to a query coordinator (e.g., 206 of FIG. 2B),
as shown in TABLE 4. However, in a couplet (e.g., (12, 2)), the
second value (e.g., 2 as in the couplet (12, 2)) now carries a
rank function value in the present example.

Based on the data (e.g., TABLE 4) received from the con-
sumers, the query coordinator returns consolidated results as
shown TABLE 5. However, any offset in TABLE 5 now
carries a quantity to be added to a local rank function value in
the present example.

Based on the information from the query coordinator, each
consumer can complete full evaluation of the ranking window
function RANK() for each of the input rows for which that
consumer is responsible.

For the ranking window function RANK() the same coop-
erative processing between the query coordinator and the
consumers, as performed with an extended data distribution
key that does not comprise a temporary distribution variable,
may not be used with an extended data distribution key that
comprises a temporary distribution variable.

When a temporary distribution variable is used in a distri-
bution key, the value assignment for the ranking window
function RANK() not only should be in compliance with the
ordering of partition-by keys and order-by keys but also
should take into account the fact that a later consumer’s first
row may have a rank function value tied (denoted herein as a
“tied rank™) with a rank function value of the preceding
consumer’s last row as duplicate rows may be distributed
among different consumers. Thus, what rank function values
the preceding consumer(s) have assigned to the last row(s)
with the same partition-by key values and the same order-by
key values as those of the later consumer’s first row(s) should
be assigned to the later consumer’s first row(s).

In some embodiments, the query coordinator is configured
to determine how many preceding consumers are involved in
aparticular tied rank, depending on how numerous rows with
the same partition-by key values and the same order-by key
values as those of the later consumer’s first row and to deter-
mine an offset for ranks for consumers depending on the
demographics of data partitions and/or data sub-partitions in
the consumers.

10

15

20

25

30

35

40

45

50

55

60

65

16

For the purpose of illustration, SO receives input rows from
one or more producers (e.g., TSC operators of FIG. 2B) as
shown in the following table:

TABLE 6
Region sales__amount
rl 10
rl 20
rl 30

S1 and S2 receive input rows from the one or more pro-
ducers as shown in the following tables, respectively:

TABLE 7

Region sales__amount

12

12
12

TABLE 8

Region sales__amount

As can be seen above, the input rows as received by the
three consumers are in compliance with a global order as
represented by a composite key comprising the partition-by
key “region” and the order-by key “sales_amount”. However,
duplicate rows (with the same value of the composite key)
may be distributed to different consumers. The consumers
(SO, S1 and S2) compute locally evaluated results of the
ranking window function “RANK()” based on their respec-
tive input data and send the locally evaluated results (some of
which may be partial) of the first and last rows in their respec-
tive input data to a query coordinator (e.g., 206 of FIG. 2B),
as shown in the following table:

TABLE 9
Consumers Information to QC
SO The first row (r1,10,1,1)
The last row (r2,10,1,1)
S1 The first row (r2,10,1,1)
The last row (r2, 30,4, 4)
S2 The first row (r2,30,1,1)
The last row (13, 30, 3, 3)

As can be seen above, for each (e.g., the last row of SO) of
the first and last rows, a consumer (e.g., SO) sends a multi-
field object (e.g., (r2, 10, 1, 1))—which may comprise locally
evaluated result—that comprises a partition-by key value
(e.g., “r2”) of that row, an order-by key value (e.g., “10”) of
that row, a local count (e.g., 1) of rows in a data partition (e.g.,
“r2” data partition) to which that row belongs, and a local rank
function value (e.g., 1) in the data partition (“r2” data parti-
tion), as seen in the input data (e.g., TABLE 6) received by the
consumer (S0).

Based on the data (e.g., TABLE 9) received from the con-
sumers, the query coordinator returns consolidated results as
shown in the following table:

US 9,158,812 B2

17 18
TABLE 10 TABLE 12
Consumers Information from QC consumers Information from QC
S0 No “offset” S0 no “offset”
S1 first row corresponding to a data partition (“r2”) that has 5 81 use 1, which is the dense__rank obtained from s0, as “offset”
rows in preceding consumers (S0): for the first (also last) data partition (“r2” data partition)
for “tied” rows [“tied” rows: rows with same tied rank or S2 use 3, which is the sum of the last dense rank function value 1
same order-by key values within the same data partition], of SO in the same data partition (“r2” data partition) and the
use the tlefi rank from the last row of S0, which is 1 last dense rank function value 2 of S1 in the same data
for non-“tied”-rows, use the sum of local count(s) of rows partition (“r2” data partition), as “offset” for the first data
in the same daté?. partition (“r2”) in one or more precleding 10 partition (r2 data partition);
consumers (SO in the present example), which in this no “offset” for other data partitions including the last data
case is 1 from SO, as “offset” artition (3 data partition)
Other rows not corresponding to a data partition (“r2”) of P P
the preceding consumer (S0)’s last row can be processed
without referring to information from preceding consumers . .
(in the present example, no such rows in S1) 15 Based on the consolidated results from the query coordi-
S2 Same rules for returned information from query coordinator nator, each consumer can complete full evaluation of the
are used. Therefore, . . .
Since the first row’s data partition (“r2” data partition) Fankmg window ﬁmctlon DENSE_RANK() fgr each of the
of $2 spreads or is distributed among SO, S1 and S2, the input rows for which that consumer is responsible.
sum (1 from SO plus 4 from S1) of counts of rows in the .
data partition (“12” data partition) is provided as “offset” . Tq evgluate the same.dense rank fun.ctlon, an e?(Fended data
for the first row’s data partition of S2 20 distribution key may instead comprise a partition-by key
No “offset” for other data partitions of $2 including “region”, an order-by key “sales_amount” and a temporary
the last data partition (13" data partition) distribution variable. With a distribution function that in part
depends on the temporary distribution variable, SO may
Based on the information from the query coordinator, each ,, feceIve input rows from one or _more produger s (e.g., TSC
consumer can complete full evaluation ofthe ranking window operators of FIG. 2B) as shown in the following table:
function RANK() for each of the input rows for which that
consumer is responsible. TABLE 13
Region sales__amount
DENSE_RANK() 30 1 10
rl 20
For the purpose of illustration, to evaluate a ranking func- r; 32
tion DENSE_RANK() in a database statement as shown in ;2 10
expression (3), SO, S1 and S2 receive input rows from one or 35
more producers (e.g., TSC operators of FIG. 2B) in the three
ranges, respectively, as shown in TABLES 1, 2 and 3. S1 and S2 receive input rows from the one or more pro-
The consumers (S0, S1 and S2) compute locally evaluated ducers as shown in TABLEs 7 and 8, respectively.
results of the r anking W.lndO.W function “DENSE_RANK()” The consumers (SO, S1 and S2) computes locally evaluated
based on their respective mput data and SeI}d the locally 49 results of the ranking window function “DENSE_RANK()”
evaluated results (some of which may be partial) of the first based on their respective input data and send the locally
and last r szsolél ﬂ;f;i é esggctlve 111;put dgtaﬁo ? (lllller}’ coorl()ill- evaluated results (some of which may be partial) of the first
nator (e.g.., © e), as shown in the ollowing table and last rows in their respective input data to a query coordi-
(note that in some embodiments, an extended distribution key - ; .
i . " nator (e.g., 206 of FIG. 2B), as shown in the following table:
does not distribute rows with same partition-by key values 45
and order-by key values to different processes):
Ry P) TABLE 14
TABLE 11 Consumers Information to QC
Consumers Information to QC S0 The first row (r1,10, 1)
50 The last row (r2,10,2)
SO The first row (r1, 1) S1 The first row (r2,10, 1)
The last row (r2, 1) The last row (r2, 30, 3)
S1 The first row (r2, 1) S2 The first row (r2,30, 1)
The last row (r2,2) The last row (13, 30, 3)
S2 The first row (r2, 1)
The last row (13, 3) 55
As can be seen above, for each (e.g., the last row of SO) of
As can be seen above, for each (e.g., the last row of SO) of glei(frsgantd last rov;ls, 12(1) cgnsumei‘. (E'g" S0) send.s a Im;th li
the first and last rows, a consumer (e.g., SO) sends a couplet eld objec (eg, (12, 10,))fw Ich may comprise partia
(eg, (12, 1))—which may comprise partial evaluation evalue‘l‘tlo’r’l result—that comprises a partition-by ke‘:‘y \j?lue
result—that comprises a key value (e.g., “r2”) of a data par- (e-g., “r27) of that row, an order-by key value (e.g., 10) of
tition to which that row belongs and a local dense rank func- that row, .apd alocal dense ral}lf function Vah}e (e.g:, 2)inthe
tion value (e.g., 1) of that row, in the data partition as seenin ~ data partition (“r2” data partition), as seen in the input data
the inputdata (e.g., TABLE 1) received by the consumer (S0). (e.g.. TABLE 13) received by the consumer (S0).
Based on the data (e.g., TABLE 11) received from the ¢5 Based on the data (e.g., TABLE 14) received from the

consumers, the query coordinator returns consolidated results
as shown in the following table:

consumers, the query coordinator returns consolidated results
as shown in the following table:

US 9,158,812 B2

19
TABLE 15

Consumers Information from QC

SO
S1

no “offset”

first row corresponding to a data partition (“r2”) that has
rows in preceding consumers (S0):

for “tied” rows (“tied” rows: rows with same tied dense
rank or same order-by key values within the same data
partition), use the tied dense rank from the last row of
SO, which is 2 for non-“tied”-rows, use the sum of
distinct dense rank function values in the same data
partition in one or more preceding consumers, which in
this case is 2 from SO, as “offset”, if the current
consumer (S1) does not have at least one tied row. If the
current consumer S1 has a tied row, the offset should be
further subtracted by 1 as the tied row(s) would have
consumed a distinct dense rank function value in the
current consumer. For example, the dense rank value for
the row (r2, 20) in TABLE 7 should be its local dense
rank value 2 plus offset 1 (obtained as the last dense

rank function value 2 of SO minus 1, which is due to the
tied rows (12, 10) in S1), equaling to 3.

Other rows (none in the present example) not corresponding
to the data partition (“r2”) of the preceding consumer (S0)’s
last row can be processed without referring to information
from preceding consumers (in the present example, no
such rows in S1)

Since the first row’s data partition (“r2” data

partition) of S2 spreads or is distributed among S0, S1
and S2, the sum (3) of the offset 1 (the last dense rank
value 2 of SO minus 1 due to tied rows) of S1 and the last
dense rank value 3 of S1 minus 1 (because S2’s first

row is also a tied row) is provided as “offset” for

rows without a tied dense rank in the first row’s data
partition of S2.

For rows with “tied” dense rank, use 4, which is

derived by the offset 1 of S1 + local dense rank of the
last row from S1 (1 + 3)

No “offset” for other data partitions of S2 including

the last data partition (“r3” data partition)

S2

Based on the consolidated results from the query coordi-
nator, each consumer can complete full evaluation of the
ranking window function DENSE_RANK() for each of the
input rows for which that consumer is responsible.

Cumulative Window Functions

For the purpose of illustration, an extended data distribu-
tion key that comprises a partition-by key “region” and an
order-by key “sales_amount” but no temporary distribution
variable is used for data distribution in evaluating a cumula-
tive window function SUM() in a database statement as
shown in expression (4). For example, SO, S1 and S2 receive
input rows from one or more producers (e.g., TSC operators
of FIG. 2B), respectively, as shown in TABLEs 1, 2 and 3.

The consumers (S0, S1 and S2) compute locally evaluated
results of the cumulative window function SUM() based on
their respective input data and send the locally evaluated
results (some of which may be partial) of the first and last
rows in their respective input data to a query coordinator (e.g.,
206 of FIG. 2B), as shown in the following table:

TABLE 16
Consumers Information to QC
SO The first row (r1, 10)
The last row (12, 20)
S1 The first row (12, 20)
The last row (12, 80)
S2 The first row (12, 40)
The last row (13, 55)

10

15

20

25

30

35

40

45

50

55

60

65

20

As can be seen above, for each (e.g., the last row of SO) of
the first and last rows, a consumer (e.g., SO) sends a couplet
(e.g., (r2, 20))—which may comprise partial evaluation
result—that comprises a key value (e.g., “r2”) of a data par-
tition to which that row belongs and a local sum function
value (e.g., 20) in the data partition as seen in the input data
(e.g., TABLE 1) received by the consumer (SO0).

Based on the data (e.g., TABLE 16) received from the
consumers, the query coordinator returns consolidated results
as shown in the following table:

TABLE 17
Consumers Information from QC
S0 no “offset”
S1 use 20, which is the value of window function for the last
row from s0, “offset” for the first (also last) data partition
(“r2” data partition)
S2 use 100, which is the sum of the sum function values (20

and 80 respectively from SO and S1) of the preceding
consumers for the same data partition (12 data partition), as
“offset” for the first data partition (12 data partition);

no “offset” for other data partitions including the last data
partition (r3 data partition)

Based on the information from the query coordinator, each
consumer can complete full evaluation of the cumulative
window function SUM() for each of the input rows for which
that consumer is responsible.

The same SUM() may be evaluated with an extended data
distribution key that comprises a partition-by key “region”, an
order-by key “sales_amount” and a temporary distribution
variable. For example, SO, S1, and S3 receive input rows from
one or more producers (e.g., TSC operators of FIG. 2B) as
shown in TABLEs 6, 7, and 8.

The consumers (SO, S1 and S2) computes locally evaluated
results of the cumulative window function “SUM()” based on
their respective input data and send the locally evaluated
results (some of which may be partial) of the first and last
rows in their respective input data to a query coordinator (e.g.,
206 of FIG. 2B), as shown in the following table:

TABLE 18
Consumers Information to QC
SO The first row (r1, 10, 10)
The last row (12, 10, 10)
S1 The first row (12, 10, 20)
The last row (12, 30, 70)
S2 The first row (12, 30, 30)
The last row (13, 30, 55)

As can be seen above, for each (e.g., the last row of SO) of
the first and last rows, a consumer (e.g., SO) sends a multi-
field object (e.g., (2, 10, 10))—which may comprise partial
evaluation result—that comprises a partition-by key value
(e.g., “r2”) of that row, an order-by key value (e.g., “10”) of
that row, and a local cumulative function value (e.g., 10) inthe
data partition (“r2” data partition), as seen in the input data
(e.g., TABLE 6) received by the consumer (SO0).

Based on the data (e.g., TABLE 18) received from the
consumers, the query coordinator returns consolidated results
as shown in the following table:

US 9,158,812 B2
21 22

TABLE 19

Consumers

Information from QC

SO

S1

No “offset” for any data partition (e.g., “r1” data partition) before the last

data partition (“r2” data partition); the last row from the last data partition

(“r2” data partition) has tied rows from S1 and the

cumulative function value (20) of the tied rows from S1 is provided

to SO to obtain the final result 30 (20 from S1 plus 10 from the last

row of SO) in the last data partition ((“r2” data partition) [Note that

tied rows containing a current row are considered together as the

current row]

Since a tied row of a cumulative function value 10 exists in the last data partition (“r2”
data partition) of the preceding consumer SO, use the cumulative function value 10 of
S1’s last row as “offset” for rows in the first data partition of S1 and obtain

a final result 30 (the offset 10 plus the local cumulative function value 20);

For rows with “tied” rows from S2, use an offset 110 to produce the

final results, wherein the offset 110 is derived from the offset 10

from SO + 70 (local cumulative sum) + 30 (the cumulative function

value of the tied row in S2);

For rows without “tied” rows from either SO or S2, use the offset 10

from SO + local cumulative function value; e.g., for row (12, 20) in
TABLE 7, the final result is 10 + 40 (the local cumulative function

value of 10 + 10 + 20 from the first three rows, respectively, in S1) =

50

S2 Since the data partition (“r2” data partition) spreads across SO, S1
and S2, use the offset 10 from SO + the local cumulative function

value 70 of S1 = 80 as “offset”;

For rows in the first data partition (“r2” data partition) with “tied”

rows from S1, produce the final result 110 (30 + 80);

For rows in the data partition (“r2” data partition) without “tied”

rows from S1, use the offset 80 from S1 + local cumulative

function value; e.g., for row (12, 40) in TABLE 8, the final result is
80 + 70 (which is the local cumulative function value 30 + 40 from

the first two rows, respectively, of S2) = 150;

For rows in other data partitions (e.g., the last data partition or “r3”

data partition), no need to use any offset or special processing

Based on the information from the query coordinator, each
consumer can complete full evaluation of the cumulative
window function SUM() for each of the input rows for which
that consumer is responsible.

Cumulative window functions such as those illustrated in
expressions (4)-(14), may be evaluated in a manner similar to
how the ranking or cumulative window functions as discussed
above are evaluated.

For the purpose of illustration only, it has been described
that a temporary distribution variable other than partition-by
keys and order-by keys may be used in an extended data
distribution key. However, instead of using a temporary dis-
tribution variable that is not a column in input data, one or
more columns in the input data other than partition-by keys
and order-by keys may be used in an extended data distribu-
tion key.

Also, for the purpose of illustration only, it has been
described that techniques as described herein can be used to
evaluate a ranking or cumulative function specified with a
measure (e.g., a “sales_amount” column) that is also an order-
by key. However, these techniques can also be adapted or used
to evaluate a ranking or cumulative function specified with a
measure that is not an order-by key. Examples of database
statements that comprise a window function specified with a
measure other than an order-by key may include, but are not
limited only to: the following expressions:

35

40

45

50

55

SELECT A,C,measure,

FIRST_VALUE(measure IGNORE NULLS)OVER
(PARTITION BY A ORDER BY B)fvl,

LAST_VALUE(measure IGNORE NULLS)OVER
(PARTITION BY A ORDER BY B)1vl

FROM t_toy; (16)

For the purpose of illustration, based on a determination
relating to DOP, three consumers (e.g., three of window sort
operators 204-1 through 204-4 illustrated in FIG. 2B), respec-
tively denoted as SO, S1, and S2, are used to evaluate a
ranking or cumulative window function in a database state-
ment as shown in expression (15). An extended data distribu-
tion key may comprise a partition-by key “A” and an order-by
key “B” but no temporary distribution variable. All possible
distinct combinational values of the partition-by key “A” and
the order-by key “B” are divided into three mutually exclusive
ranges. Each of the three mutually exclusive ranges is
assigned to a different consumer SO, S1, or S2, respectively.

For example, SO receives input rows from one or more
producers (e.g., TSC operators of FIG. 2B) in the first range
(demographics) in the three ranges as shown in the following
table:

TABLE 20
SELECT A,C,measure, 60
A B measture
FIRST_VALUE(measure)OVER(PARTITION BY A 1 1 1
ORDER BY B)fvl, 1 1 1
1 1 4
LAST_VALUE(measure)OVER(PARTITION BY A 1 1 21
ORDER BY B)lvl 65 1 2 1
1 2 9

FROM t_toy; (15)

US 9,158,812 B2

23
TABLE 20-continued
A B measure
1 2 10
1 2 20

S1 and S2 receive input rows from one or more producers
for the second range and the third range in the three mutually
exclusive ranges as shown in the following tables, respec-
tively:

TABLE 21

A B Measure

2 1 7

2 1 10
TABLE 22

A B Measure

2 2 1

2 2 5

2 2 10

2 3 1

2 3 1

2 3 7

2 3 9

2 3 11

2 3 NULL

As can be seen above, a global order may be defined by a
composite key comprising an ordered set of the partition-by
key “A”, the order-by key “B”, and the “measure” column.
The consumers (SO, S1 and S2) compute locally evaluated
results of the cumulative window functions
“FIRST_VALUE()” and “LAST_VALUE()” based on their
respective input data and send the locally evaluated results
(some of which may be partial) of the first and last rows in
their respective input data to a query coordinator (e.g., 206 of
FIG. 2B), as shown in the following table:

TABLE 23
Consumers Information to QC
SO The first row (1,1,21)
The last row (1,1,20)
S1 The first row (2,7,10)
The last row (2,7,10)
S2 The first row (2,1,10)
The last row (2,1, null)

As can be seen above, for each (e.g., the last row of SO) of
the first and last rows, a consumer (e.g., SO) sends a multi-
field object (e.g., (1, 1, 20))—which may comprise partial
evaluation result—that comprises a key value (e.g., “1”) of a
data partition to which that row belongs, a FIRST_VALUE()
function value 1 of a data partition (A="1" data partition) up
to that row, and a LAST_VALUE() function value 20 of the
data partition (A="1" partition) up to that row, as seen in the
input data (e.g., TABLE 20) received by the consumer (S0).

Based on the data (e.g., TABLE 23) received from the
consumers, the query coordinator returns consolidated results
as shown in the following table:

10

15

20

25

30

40

45

50

55

TABLE 24
Consumers Information from QC
SO no “offset” needed
S1 no “offset” needed [as partitions are different]
S2 use the firstvalue 7 from the very first row - in this

example, S1°s first row - from this or preceding consumers
in the same data partition (A = “2” data partition) as
“offset” for the first_ value for rows from the first

data partition (replace the local first_ value with this
“offset”);

for the last_value, use the local last_ value without special
processing

Based on the information from the query coordinator, each
consumer can complete full evaluation of the cumulative
window functions FIRST_VALUE() and LAST_VALUE()
for each of the input rows for which that consumer is respon-
sible.

To evaluate a ranking or cumulative window function in a
database statement as shown in expression (15), an extended
data distribution key that comprises a column (e.g., the “mea-
sure” column as specified in expression (15)) in addition to a
partition-by key “A” and an order-by key “B” may be used for
data distribution, without using a temporary distribution vari-
able. For example, all possible distinct combinational values
of the partition-by key “region”, the order-by key “sales_
amount”, and the “measure” column, are divided into three
mutually exclusive ranges. Each of the three mutually exclu-
sive ranges is assigned to a different consumer SO, S1, or S2.

For the purpose of illustration, SO receives input rows from
one or more producers (e.g., TSC operators of FIG. 2B) in the
first range (demographics) in the three ranges as shown in the
following table:

TABLE 25
A B Measure
1 1 1
1 1 1
1 1 4
1 1 21
1 2 1
1 2 9

S1 and S2 receive input rows from the one or more pro-
ducers for the second range and the third range in the three
mutually exclusive ranges, respectively, as shown in the fol-
lowing tables:

TABLE 26

A B measture

1 2 10

1 2 20

2 1 7

2 1 10

2 2 1

2 2 5
TABLE 27

A B measture

2 2 10

2 3 1

2 3 1

2 3 7

US 9,158,812 B2

25
TABLE 27-continued
A B measure
2 3 9
2 3 11
2 3

The consumers (S0, S1 and S2) compute locally evaluated
results of the cumulative window functions
“FIRST_VALUE()” and “LAST_VALUE()” based on the
consumers’ respective input data and send the locally evalu-
ated results (some of which may be partial) of the first and last
rows in their respective input data to a query coordinator (e.g.,
206 of FIG. 2B), as shown in the following table:

TABLE 28
Consumers Information to QC
SO The first row (1,1,1,21)
The last row (1,2,1,9)
S1 The first row (1,2,10, 20)
The last row (2,2,7,5)
S2 The first row (2,2,10, 10)

The last row (2, 3,10, null)

As can be seen above, for each (e.g., the last row of SO) of
the first and last rows, a consumer (e.g., SO) sends a multi-
field object (e.g., (1, 2, 1, 9))—which may comprise partial
evaluation result—that comprises a partition-by key value
(e.g., “1”) of a data partition to which that row belongs, a
further order-by key value (e.g., “2”) of that row, a
FIRST_VALUE() function value 1 up to that row, and a
LAST_VALUE() function value 9 up to that row, as seen in
the input data (e.g., TABLE 25) received by the consumer
(S0).

Based on the data (e.g., TABLE 28) received from the
consumers, the query coordinator returns consolidated results
as shown in the following table:

TABLE 29

Consumers Information from QC

SO for the first_value, no “offset” needed for the first data

partition (A = “1” data partition); use the local first_value in the
first data partition;

for the last_value, the last data partition (A = “1” data partition)
has tied rows from S1, use the last_value 20 of S1’s first row
for tied rows in the last data partition of SO

for the first_value in the first data partition (A = “1” data
partition), use the first_value 1 of SO’s last row as
“replacement” for tied rows (tied with SO’s last row) in S1 ;

for the last_value in the last data partition (A = “2” data
partition), since S1’s last data partition has tied rows from S2,
use the last_value 10 from S2’s first row for these “tied” rows
in the last data partition of S1

for the first_value, use the first_value 7 from S1’s last row as
“replacement” for the first and only data sub-partition (A = “2”
data partition);

for the last_value, use the local last_value without special
processing

S1

S2

Based on the information from the query coordinator, each
consumer can complete full evaluation of the cumulative
window functions FIRST_VALUE() and LAST_VALUE()
for each of the input rows for which that consumer is respon-
sible.

To evaluate a ranking or cumulative window function in a
database statement as shown in expression (16), as in other
ranking or cumulative window functions, the number of con-

10

15

20

25

35

40

45

50

55

65

26

sumers may be determined based on a desired value of DOP.
For the purpose of illustration, four consumers (e.g., window
sort operators 204-1 through 204-4 illustrated in FIG. 2B),
respectively denoted as SO, S1, S2, and S3, are to be used. An
extended data distribution key that comprises a partition-by
key “A” and an order-by key “B” but no temporary distribu-
tion variable is used for data distribution to the consumers. All
possible distinct combinational values of the partition-by key
“A” and the order-by key “B” are divided into four mutually
exclusive ranges. Each of the four mutually exclusive ranges
is assigned to a different consumer S0, S1, S2, or S3, respec-
tively.

For example, SO receives input rows from one or more
producers (e.g., TSC operators of FIG. 2B) in the first range
(demographics) in the three ranges as shown in the following
table:

TABLE 30

measure

— e e e
N N

S1, S2 and S3 receive input rows from one or more pro-
ducers for the other ranges in the four mutually exclusive
ranges, respectively, as shown in the following tables:

TABLE 31
A B meastre
1 6 1
1 6 9
1 7 20
2 8 7
TABLE 32
A B meastre
2 9 1
2 10 5
2 11 10
2 12
TABLE 33
A B measture
2 13
2 14
2 15 1
2 16
2 17

The consumers (SO, S1, S2 and S3) computes locally
evaluated results of the cumulative window functions
“FIRST_VALUE (<expr> IGNORE NULLS)” and
“LAST_VALUE (<expr>IGNORE NULLS)” based on their
respective input data and send the locally evaluated results
(some of which may be partial) of the first and last rows in
their respective input data to a query coordinator (e.g., 206 of
FIG. 2B), as shown in the following table:

US 9,158,812 B2

27 28
TABLE 34 TABLE 36
Consumers Information to QC A B Measure
SO The first row (1, null, null) 1 1
The last row (1,10, 10) 5 1 1
S1 The first row (1,1,9) 1 1
The last row 2,7,7) 1 1
S2 The first row 2,1,1) 1 2 1
The last row (2,1,10)
S3 The first row (2, null, null)
The last row (2,1,1) 10 S1, S2 and S3 receive input rows from one or more pro-
ducers for the other three ranges in the four mutually exclu-
As can be seen above, for each (e.g., the last row of S0) of sive ranges, respectively, as shown in the following tables:
the first and last rows, a consumer (e.g., SO) sends a multi-
field object (e.g., (1, 10, 10))—which may comprise partial TABLE 37
evaluation result—that comprises a key value (e.g., “1”) ofa 15
data partition to which that row belongs, a first-value-ignore- A B Measure
nulls function value 10 of a data sub-partition (A “1” and B 1 5 9
“5” data sub-partition) to which that row belongs, and a 1 2 10
last-value-ignore-nulls function value (also) 10 of the data 1 2 20
sub-partition (A “1” and B “5” data sub-partition) to which 20 2 ! /
that row belongs, as seen in the input data (e.g., TABLE 30)
received by the consumer (S0).
Based on the data (e.g., TABLE 34) received from the TABLE 38
consumers, the query coordinator returns full evaluation
results and other necessary information as shown in the fol- 25 A B Measure
lowing table: 5 5 1
2 2 5
TABLE 35 2 2 10
2 3 1
Con- 30
sumers Information from QC
SO no special processing for either the first_value ignore nulls or the TABLE 39
last_value ignore nulls (nulls in the local data are ignored in local
processing of SO until a first non-null—10 in this example—is A B Measure
encountered in SO; if there is no non-null in S1, continue until a
non-null is encountered in subsequent consumer(s)) 35 2 3
S1 for the first_value ignore nulls, use the first_value 10 from S0’s 2 3
last row as “replacement” for rows from the first data partition 2 3
(A “1” data partition); 2 3
for the last_value ignore nulls, no special processing 2 3
S2 for the first_value ignore nulls, use the first_value 7 from S1’s
last row as “replacement” for rows from the data partition (A “2” 40
data partition); The consumers (S0, S1, S2 and S3) compute locally evalu-
for the last_value ignore nulls, no special processing ated results of the cumulative window functions
S3 for the ‘ﬁslstfvalue 1g1’1’ore nulls, luse the first_value 7 9fSl s“la’s’t “FIRST_VALUE (IGNORE NULLS)” and “LAST_VALUE
row as “replacement” for rows in the first data partition (A “2 . N ..
data partition) (IGNORE NULLS)” based on their respective input data and
for the last_value ignore nulls, replace with the last_value 10 of 45 send the locally evaluated results (some of which may be
82’ last row for rows with null local last_values partial) of the first and last rows in their respective input data
to a query coordinator (e.g., 206 of FIG. 2B), as shown in the
Based on the information from the query coordinator, each following table:
consumer can complete full evaluation of the cumulative
window functions FIRST_VALUE (IGNORE NULLS) and 50 TABLE 40
LAST_VALUE (IGNORE NULLS) for each of the input .
. . . Consumers Information to QC
rows for which that consumer is responsible.
Alternatively, to evaluate a ranking or cumulative window SO The first row (1, 1, null, null)
function in a database statement as shown in expression (16), The last row (1,2,1,1)
s ot : . « s S1 The first row (1,2,9,20)
an extended data distribution key that comprises a “measure” 55 The last row 2177
column specified in expression (16) in addition to a partition- S The first row 2.2.1.10)
by key “A” and an order-by key “B” may be used for data The last row (2,3,1,1)
distribution, without using a temporary distribution variable. 53 The first row (2, 3, null, null)
. o . L . e The last row (2, 3, null, null)
All possible distinct combinational values of the partition-by
key “region”, the order-by key “sales_amount”, and the 60
“measure” column, are divided into four mutually exclusive As can be seen above, for each (e.g., the last row of SO) of
ranges. Hach of the four mutually exclusive ranges is assigned the first and last rows, a consumer (e.g., SO) sends a multi-
to a different consumer SO, S1, S2, or S3. field object (e.g., (1, 2, 1, 1))—which may comprise partial
For example, SO receives input rows from one or more evaluation result—that comprises a partition-by key value
producers (e.g., TSC operators of FIG. 2B) in the first range 65 (e.g., “1”) of a data partition to which that row belongs, a

(demographics) in the four ranges as shown in the following
table:

further order-by key value (e.g., “2”) of that row, a
FIRST_VALUE() function value 1 up to that row, and a

US 9,158,812 B2

29
LAST_VALUE() function value (also) 1 up to that row, as
seen in the input data (e.g., TABLE 36) received by the
consumer (S0).
Based on the data (e.g., TABLE 40) received from the
consumers, the query coordinator returns consolidated results
as shown in the following table:

TABLE 41

Consumers Information from QC

SO for the first_value ignore nulls, no special processing; use the
first non-null 1 encountered in the local data of SO;

for the last_value ignore nulls, use the last_value 20 from S1’s
first row as the final result for the last data partition (A = “1”
data partition), as SO’s last row has tied rows from S1

for the first_value ignore nulls in the first data partition

(A =“1” data partition), use the first_value 1 from SO’s last row
as “replacement” for rows from the first data partition (A “1”
data partition) of S1;

for the last_value ignore nulls, no special processing

for the first_value ignore nulls in the first data partition

(A =“2” data partition), use the first_value 7 from S1’s last row
as “replacement” for rows from the first data partition (A “2”
data partition) of S2;

for the last_value ignore nulls in the last data partition (also

A =27 data partition), S2’s last row has tied rows from S3;
however, since the tied rows from S3 have null values for the
last_value, use S2’s local last_value 1 for the rows in S2°s last
data partition

for the first_value ignore nulls, use the first_value 7 from S1’s
last row as “replacement” for rows from the first data partition
(A “2” data partition)

for the last_value ignore nulls in the first data partition (A “2”
data partition), since S3’s first row has tied rows from S2, and
since the rows in S3 have null values for the local last_values,
use the last_value 1 from S2’s last row as the final result

S1

S2

S3

Based on the information from the query coordinator, each
consumer can complete full evaluation of the cumulative
window functions FIRST_VALUE (IGNORE NULLS) and
LAST_VALUE (IGNORE NULLS) for each of the input
rows for which that consumer is responsible.

It should be noted that in some embodiments, processes
need to send order-by key values to a query coordinator when
a temporary distribution variable is included in the distribu-
tion key, as the query coordinator needs to know the order-by
key values in order to generate the consolidated information
to be returned to the processes. For the purpose of illustration,
an order-by key “quarter” and a temporary distribution vari-
able are used in the distribution key, both S1 and S2 may have
a “quarter” column value “Q1.”. The value “Q1” needs to be
sent to the query coordinator so that the query coordinator,
based on the specific window function, generate the consoli-
dated information.

Execution Plan Generation

FIG. 1B is a block diagram that depicts the generation of
exemplary query execution plans using a query optimizer.
FIG. 1B depicts a query execution plan generator 115, a query
optimizer 126, a data-aware adaptive execution plan 128, a
database storage subsystem 150, and a database statement
198 (e.g., expression (1)). Database storage subsystem 150
includes static query statistics 151. Partition-by-key execu-
tion plan 128A includes TSC operators 202 and window sort
operators 204. Extended-data-distribution-key execution
plan 128B includes TSC operators 202, window sort opera-
tors 204, and query coordinator 206. With respect to FIG. 1B,
like numbered elements may correspond to the same ele-
ments from FIG. 1A.

w

10

15

25

30

35

40

55

60

30

In FIG. 1B, a database statement 198, which is a database
statement (e.g., any of expressions (1)-(16)) comprising one
or more of ranking window functions or cumulative window
functions, is provided for processing by database system 100
of FIG. 1A. Database statement 198 is carried out on a “sales”
table corresponding to TABLE 1. The “sales” table may be
stored in database table 152 of FIG. 1A. Specifically, database
statement 198 is structured as a SQL statement. In this man-
ner, a user can retrieve individual input rows with results of
analytical functions such as the one or more of ranking win-
dow functions or cumulative window functions specified in
the database statement.

As shown in FIG. 1B, the database statement 198 is pro-
cessed through query execution plan generator 115. An inter-
mediate execution plan may result, which is further processed
through query optimizer 126. Query optimizer 126 may
modify the intermediate execution plan based on the esti-
mated number of distinct (combinational) values of partition-
by keys of partition-by keys. In response to determining that
partition-by keys with a sufficient number of distinct values
for data distribution in parallel execution exists, a partition-
by-key execution plan such as 128A is provided, where full
aggregation is only carried out at window sort operators 204.
In response to determining that an extended data distribution
key with a sufficient number of distinct values for data distri-
bution in parallel execution exists, an extended-data-distribu-
tion-key execution plan such as 128B is provided, where
partial aggregation is carried out at window sort operators 204
for atleast one of the ranking or cumulative window functions
and full aggregation is carried out at query coordinator 206
for the at least one of the ranking or cumulative window
functions.

It may be noted that the methods and procedures discussed
in the present application are generally applicable for pro-
ducer operators of any execution plan, regardless of complex-
ity or specific structure. Thus, record sources for window sort
operators or window consolidation operators are not
restricted to table scans and could be other operators such as
table joins or even other window sort operators or window
consolidation operators.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose com-
puting devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include
digital electronic devices such as one or more application-
specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs) that are persistently programmed to
perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

For example, FIG. 3 is a block diagram that illustrates a
computer system 300 upon which an embodiment of the
invention may be implemented. Computer system 300
includes a bus 302 or other communication mechanism for
communicating information, and a hardware processor 304

US 9,158,812 B2

31

coupled with bus 302 for processing information. Hardware
processor 304 may be, for example, a general purpose micro-
processor.

Computer system 300 also includes a main memory 306,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 302 for storing information and
instructions to be executed by processor 304. Main memory
306 also may be used for storing temporary variables or other
intermediate information during execution of instructions to
be executed by processor 304. Such instructions, when stored
in non-transitory storage media accessible to processor 304,
render computer system 300 into a special-purpose machine
that is customized to perform the operations specified in the
instructions.

Computer system 300 further includes a read only memory
(ROM) 308 or other static storage device coupled to bus 302
for storing static information and instructions for processor
304. A storage device 310, such as a magnetic disk, optical
disk, or solid-state drive is provided and coupled to bus 302
for storing information and instructions.

Computer system 300 may be coupled via bus 302 to a
display 312, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 314, includ-
ing alphanumeric and other keys, is coupled to bus 302 for
communicating information and command selections to pro-
cessor 304. Another type of user input device is cursor control
316, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 304 and for controlling cursor movement
ondisplay 312. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g.,y), that allows the device to specify positions in a plane.

Computer system 300 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic which
in combination with the computer system causes or programs
computer system 300 to be a special-purpose machine.
According to one embodiment, the techniques herein are
performed by computer system 300 in response to processor
304 executing one or more sequences of one or more instruc-
tions contained in main memory 306. Such instructions may
be read into main memory 306 from another storage medium,
such as storage device 310. Execution of the sequences of
instructions contained in main memory 306 causes processor
304 to perform the process steps described herein. In alterna-
tive embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operate in a specific fashion. Such storage
media may comprise non-volatile media and/or volatile
media. Non-volatile media includes, for example, optical
disks, magnetic disks, or solid-state drives, such as storage
device 310. Volatile media includes dynamic memory, such as
main memory 306. Common forms of storage media include,
for example, a floppy disk, a flexible disk, hard disk, solid-
state drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage medium,
any physical medium with patterns of holes, a RAM, a
PROM, and EPROM, a FLASH-EPROM, NVRAM, any
other memory chip or cartridge.

Storage media is distinct from but may be used in conjunc-
tion with transmission media. Transmission media partici-
pates in transferring information between storage media. For
example, transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus
302. Transmission media can also take the form of acoustic or

10

15

20

25

30

35

40

45

50

55

60

65

32

light waves, such as those generated during radio-wave and
infra-red data communications.

Various forms of media may be involved in carrying one or
more sequences of one or more instructions to processor 304
for execution. For example, the instructions may initially be
carried on a magnetic disk or solid-state drive of a remote
computer. The remote computer can load the instructions into
its dynamic memory and send the instructions over a tele-
phone line using a modem. A modem local to computer
system 300 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 302. Bus 302 carries the data to main memory 306,
from which processor 304 retrieves and executes the instruc-
tions. The instructions received by main memory 306 may
optionally be stored on storage device 310 either before or
after execution by processor 304.

Computer system 300 also includes a communication
interface 318 coupled to bus 302. Communication interface
318 provides a two-way data communication coupling to a
network link 320 that is connected to a local network 322. For
example, communication interface 318 may be an integrated
services digital network (ISDN) card, cable modem, satellite
modem, or a modem to provide a data communication con-
nection to a corresponding type of telephone line. As another
example, communication interface 318 may be a local area
network (LAN) card to provide a data communication con-
nection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication
interface 318 sends and receives electrical, electromagnetic
or optical signals that carry digital data streams representing
various types of information.

Network link 320 typically provides data communication
through one or more networks to other data devices. For
example, network link 320 may provide a connection through
local network 322 to a host computer 324 or to data equip-
ment operated by an Internet Service Provider (ISP) 326. ISP
326 in turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 328. Local network 322
and Internet 328 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 320 and
through communication interface 318, which carry the digital
data to and from computer system 300, are example forms of
transmission media.

Computer system 300 can send messages and receive data,
including program code, through the network(s), network
link 320 and communication interface 318. In the Internet
example, a server 330 might transmit a requested code for an
application program through Internet 328, ISP 326, local
network 322 and communication interface 318.

The received code may be executed by processor 304 as it
is received, and/or stored in storage device 310, or other
non-volatile storage for later execution.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. The
sole and exclusive indicator of the scope of the invention, and
what is intended by the applicants to be the scope of the
invention, is the literal and equivalent scope of the set of
claims that issue from this application, in the specific form in
which such claims issue, including any subsequent correc-
tion.

US 9,158,812 B2

33

What is claimed is:
1. A method comprising:
generating an execution plan for a database statement
issued against a plurality of rows comprising a plurality
of columns, where said database statement specifies a
window function and specifies for said window func-
tion, a partition-by key of said plurality of columns and
an order-by key of said plurality of columns;

determining a number of sort operators to be included in
said execution plan;

determining a distribution key based at least in part on the

partition-by key and the order-by key;

determining, based on the distribution key, a plurality of

mutually exclusive ranges; and

determining, based at least in part on the plurality of mutu-

ally exclusive ranges, a distribution function for distrib-
uting each row of the plurality of rows to a respective
specific sort operator of said sort operators based on
values of the partition-by key and the order-by key of
said each row;

wherein the method is performed by one or more comput-

ing devices.

2. The method of claim 1, further comprising executing
said execution plan, wherein said executing comprises:

each sort operator of said sort operators locally evaluating

the window function based on a respective subset of
rows in the plurality of rows, wherein said respective
subset of rows in the plurality of rows is distributed to
said each sort operator based on the distribution func-
tion;

said sort operators sending locally evaluated results of the

window function to a query coordinator;

said query coordinator consolidating said locally evaluated

results of the window function and returning consoli-
dated results of said window function to said sort opera-
tors; and

each sort operator of said sort operators, based at least in

part on one or more of said consolidated results of said
window function, generating globally complete results
of said window function for each row in a respective
subset of rows in the plurality of rows.

3. The method of claim 2, wherein each sort operator of
said sort operators has a respective location in a global order
implemented by said distribution function, and further
including said each sort operator receiving a respective con-
solidated result of said consolidated results from said query
coordinator based on said respective location of said each sort
operator in said global order.

4. The method of claim 1, wherein a temporary distribution
variable is further included in said distribution function.

5. The method of claim 1, wherein each sort operator of
said sort operators is assigned one or more contiguous ranges
in the plurality of mutually exclusive ranges.

6. The method of claim 1, wherein the distribution key
further comprises one or more of partition-by keys other than
the partition-by key, or order-by keys other than the order-by
key.

7. The method of claim 1, wherein said window function is
a ranking window function.

8. The method of claim 1, wherein said window function is
a cumulative window function.

9. The method of claim 1, wherein said window function
comprises a measure that is based on an order-by key speci-
fied in said window function.

10. The method of claim 1, wherein said window function
comprises a measure that is not based on an order-by key
specified in said window function.

5

10

15

20

25

30

35

40

45

50

55

60

65

34

11. One or more non-transitory computer-readable media
storing sequences of instructions that, when executed by one
or more processors, cause performance of a method compris-
ing:
generating an execution plan for a database statement
issued against a plurality of rows comprising a plurality
of columns, where said database statement specifies a
window function and specifies for said window func-
tion, a partition-by key of said plurality of columns and
an order-by key of said plurality of columns;

determining a number of sort operators to be included in
said execution plan;

determining a distribution key based at least in part on the

partition-by key and the order-by key;

determining, based on the distribution key, a plurality of

mutually exclusive ranges; and

determining, based at least in part on the plurality of mutu-

ally exclusive ranges, a distribution function for distrib-
uting each row of the plurality of rows to a respective
specific sort operator of said sort operators based on
values of the partition-by key and the order-by key of
said each row.

12. The one or more non-transitory computer-readable
media of claim 11, wherein the sequences of instructions
further comprise instructions that, when executed by said one
or more processors, cause executing said execution plan,
wherein said executing comprises:

each sort operator of said sort operators locally evaluating

the window function based on a respective subset of
rows in the set of rows, wherein said respective subset of
rows in the plurality of rows is distributed to said each
sort operator based on the distribution function;

said sort operators sending locally evaluated results of the

window function to a query coordinator;

said query coordinator consolidating said locally evaluated

results of the window function and returning consoli-
dated results of said window function to said sort opera-
tors; and

each sort operator of said sort operators, based at least in

part on one or more of said consolidated results of said
window function, generating globally complete results
of said window function for each row in a respective
subset of rows in the plurality of rows.

13. The one or more non-transitory computer-readable
media of claim 12, wherein each sort operator of said sort
operators has a respective location in a global order imple-
mented by said distribution function, and wherein the
sequences of instructions further include instructions that,
when executed by said one or more processors, cause each
sort operator of said sort operations receiving a respective
consolidated result of said consolidated results from said
query coordinator based on said relative location of said each
sort operator in said global order.

14. The one or more non-transitory computer-readable
media of claim 11, wherein a temporary distribution variable
is further included in said distribution function.

15. The one or more non-transitory computer-readable
media of claim 11, wherein the sequences of instructions
further include instructions that, when executed by said one
Or more processors, cause sort operator of said sort operators
being assigned one or more contiguous ranges in the plurality
of mutually exclusive ranges.

16. The one or more non-transitory computer-readable
media of claim 11, wherein the distribution key further com-
prises one or more of partition-by keys other than the parti-
tion-by key, or order-by keys other than the order-by key.

US 9,158,812 B2

35

17. The one or more non-transitory computer-readable
media of claim 11, wherein said window function is a ranking
window function.

18. The one or more non-transitory computer-readable
media of claim 11, wherein said window function is a cumu-
lative window function.

19. The one or more non-transitory computer-readable
media of claim 11, wherein said window function comprises
a measure that is based on an order-by key specified in said
window function.

20. The one or more non-transitory computer-readable
media of claim 11, wherein said window function comprises
a measure that is not based on an order-by key specified in
said window function.

#* #* #* #* #*

10

15

36

